《解説》

合成モルデナイトの物性とAI原子分布5員環則の発見

板橋慶治

東ソー(株)南陽研究所

合成モルデナイト中の規則的AI原子分布を決定した解析過程を概説する。Si/Al比=5~10の 合成モルデナイトの吸着特性およびXRDデータから3c長周期構造を見出し、 29 Si MAS NMR データからSi に置換されるAIサイトを推定した。新しい解析手法であるconnectivityconfiguration matrices 法を適用し、物性、特性変化の組成依存性と一致するAI原子分布を決定 した。得られた規則的AI原子分布から、2個のAI原子を含む5員環は不安定であるという、「5ring(2AI)回避則」を見出した。Loewenstein則を補足するこの経験則の妥当性と重要性につい ても述べる。

はじめに

ハイシリカゼオライトの一種である合成モルデナ イト(典型組成: $Na_8[(AlO_2)_8(SiO_2)_{40}] \cdot 24H_2O)$ は, Sandらの研究成果¹⁾を基にNorton社により初めて 商品化された。そのSi/Al比は5~6程度であった。 Si/Al比≥6のモルデナイトはWhittemore等²⁻⁴⁾に よって合成されていたが、構造特性や吸着特性につ いてはほとんど報告されていなかった。

東ソーでは1980年にモルデナイト合成研究をス タートし,比較的短期間に有機アミン類を使用せず にSi/Al比=5~10の結晶の工業的生産処方を確立し た。商品化に際して,これら一連のハイシリカモル デナイト結晶の物性,特性を自らの手で明らかにし たいという思いが,この研究のスタートであった。

キャラクタリゼーションの過程を,順を追って分 かりやすく説明したい。

1. 物性と特性

1.1 吸着特性

Si/A1比が増加し、Na⁺の数が減ると水分吸着容量 は減少し、逆にベンゼン吸着容量は増加する⁵⁾。こ の吸着特性の変化は、結晶の親・疎水性の変化と一 次元細孔であるメインチャンネルの空孔容積の変化 によるものである。細孔内のベンゼンを一次元液体 と考えると、ベンゼン分子(3.2×6.5×7.5Å)と

〒746-8501 山口県新南陽市開成町4560 E-mail:k_ita@tosoh.co.jp メインチャンネル径(6.7×7.0Å)の大きさから, ベンゼンは図1のように2列に並んでおり,陽イオ ンはベンゼン分子を排除する⁵⁾。すなわち,ベンゼ ン吸着容量は図2に示すように陽イオンの大きさと 数に比例する。図2の直線は次式で与えられる。

 $N_b = A_M - B_M (N_c - 5.2)$ at $5.2 \le N_c \le 8$

であり,

 $N_b = A_M$ at $N_c < 5.2$

ここで N_b は単位胞あたりの吸着ベンゼン分子数, A_M は飽和吸着分子数, B_M は陽イオン M^+ が排除す るベンゼン分子数, N_c は陽イオン数(単位胞あたり のAI原子数 [AI] に等しい)である。また,陽イオ

図1 モルデナイト骨格とメインチャンネル内のベンゼン分 子吸着モデル

図2 単位胞中の陽イオン数(n_c)と吸着ベンゼン分子数(n_b)

ンM⁺の "exclusion length" l_M (Å) は、ベンゼン 分子の長径7.5 Åから

 $l_M = B_M \times 7.5$

と表され,その値は図2から求めると結晶イオン半 径のほぼ2倍に等しい⁶⁾。[Al]=8のときメインチャ ンネル壁側にある陽イオン数は2.8±0.2, [Al]≦ 5.2±0.2ではメインチャンネルには陽イオンは存在 しないことを示している。2.8という非整数値の理 解にはしばらく時間を要した。

1.2 ²⁹Si MAS NMR スペクトルの[AI]依存性

²⁹Si MAS NMR スペクトルの [Al] 依存性を図3 に示す。Si(nAl) (n=0~2) の値はいずれも直線的 に増減する⁶⁾。その変化は

 $d[Si(0A1)]/d[A1] = -4, \quad d[Si(1A1)]/d[A1] = 2$ d[Si(2A1)]/d[A1] = 1

である。これは図4に示すように、骨格内アルミノ シリケート鎖末端のT_xサイト上のAlがSiに置換さ れる場合にのみ起こり得る変化である。環状や鎖状 アルミノシリケートの内部のAlがSiに置換されて もこのような変化は起きない。XRD構造解析^{7,8)}や 理論的計算⁹⁾および²⁹Si MAS NMRによる方法¹⁰⁾ などによる多くの解析結果-4員環の対角線上にAl が存在する-は完全に否定された。また静置法で合 成した結晶や他社品のSi(nAl)分布もこれらの直線 上に乗る。したがって、骨格中のSi-Al原子配列は 合成法や結晶粒子形状に依存せず、[Al]のみによっ

図3 単位胞中のAI原子数([Al])とSi(nAl)数との関係

図4 優先的にSiに置換されるAI原子サイトモデル (O原子は省略)

て決まる。

1.3 Stacking faultsの問題

モルデナイトの粉末X線回折図において,(111), (130),(241)および(002)などの特定面指数の回 折強度は [A1]に比例して変化し,その強度比は直 線的に増大する^{5,6)}。イオン交換すると比の値は変化 するが,直線性は全く失われない。これは何を意味 しているのであろうか?

モルデナイトの構造は一般的には空間群 Cmcmと されているが、図1 における4員環のc軸方向位置の 組合せ(表1)により、類似構造群として Cmmm, Imcm および Immm の3 つのタイプがある¹¹⁾。これ らの中で、Cmcm と Imcm ではメインチャンネルは 一次元細孔であるが、Cmmm と Immm ではサイドポ ケットが貫通して2次元細孔が形成される。二次元 細孔が形成されれば吸着特性や触媒特性は大きく変 化すると推定される。Cmcm と Cmmm 構造が共存し ているとすると、Si/A1 比の違いによる特定面指数 の回折強度の変化を説明できる。この点を明らかに するために Rietveld 解析を行った。当初はこの仮定

表1 4員環のc軸方向の位置と構造種

	4員環の相対位置									
空間群	Α	В	С	D						
Cmmm	0	0	0	0						
Cmcm	0	1/2	1/2	0						
Immm	0	1/2	0	1/2						
Imcm	0	0	1/2	1/2						

の基に、結晶のSi/Al比が高いほどCmcm構造の存 在割合が増加してstacking faults が減少すると考え た。しかしながら、詳細解析を行った結果この回折 強度の変化は、サイドポケット内のNa+、吸着水が Si/Al比の増加と共にメインチャネル方向にシフトす るためであることが分った。また計算上存在する筈 のCmmmに帰属される回折線は全く検出されないの で、X線で検出し得るほどのstacking faults は存在 しないと結論した¹²⁾。

一方,Al含有量の変化に伴う格子定数および各原 子サイトの変化も正確に求めることができた。

1.4 長周期構造の発見

含水ゼオライトのRietveld解析による<T-O>ボ ンド長は誤差が大きく信頼性なし、が高石先生の持 論であったが、Rietveld解析による図5のデータ¹²⁾ を再検討して次の結論を得た。<T-O>ボンド長の 誤差を覚悟で増減の傾向を信頼すれば、AlからSiへ の置換により<T-O>が縮む。すなわち、まずT₄上 のAlがSiに置き換わる。

ところで、メインチャンネル内の陽イオン数 2.8±0.2/u.cをどう解釈するか?AlとNa+が規則的 分布をするならば、整数となるべきである。【2.8± 0.2=8/3と考えれば、c軸方向に3倍の長周期構造 がある】 – 高石先生の直感である。そして図5の折 れ線の折点の座標は3c長周期構造では整数となる。 したがって、T4サイト上のAlに配位した陽イオン がベンゼン分子を排除する。

従来の方法で3c長周期構造のAl分布を求めることは不可能であった。新しい解析法が必要になり, 試行錯誤を経て,後に述べるconnectivity-configurationmatrices 法を高石先生が創出した。

2. AI 原子分布の決定¹³⁾

以上の測定,解析結果から全Al原子分布の決定を

図5 各<T-O>結合距離のA1含量依存性

試みた。AI原子分布は結晶構造と調和して完全に規 則的であると考えた。その解析プロセスは極めて複 雑なので詳細は原論文に譲り,ここでは結果を単純 化して説明する。

2.1 モルデナイトの空間群とTサイト

従来モルデナイトの空間群は*Cmcm*とされていた が、これはAlとSiを区別せずに解析した結果であ る。Alを規則的に配列し、Al-O-Al結合を回避する 空間群はその下位グループであるCcである。対称 性が低下するため4種のT原子の等価点数は1/4に減 少する。したがって、Tサイトの数は48×3×1/4= 36/u.cとなり、Alの数は3倍周期の新単位胞では最 大6個(=8×3/4)となる(非等価なTサイトは $T_{i,j}$ のように二重サフィックスで指定する必要がある)。

2.2 Connectivity-configuration matrices法

単位胞中の全T原子の三次元的結合状態を表記す る行列がconnectivity matrix である。モルデナイト の3倍周期の新単位胞では36列36行の matrix とな る¹³⁾。表2にその一部を示す。表中"1"は酸素原 子を挟んでお互いに隣同士であることを示し,"0" はさらにもう一つ先の隣同士,無印はそれから更に

[AI] / atoms per 3-times larger unit cell

表2 Connectivity matrix の一部

T _{1i}					T2	j.							T	3.k		
1 2 3 4 5 6 7 8 9 10 11 12	12	3 4	45	6	7	8	9	10	11	12	1	3	5	7	9	11
TuN**1*1	0				0		*	1	*		1	*	0	0		
T ₁₂ * 1 * 1 *	0					0		*	1	*	1	0	*	0		
Tin * 1 * * 1		0			*		0		*	1	0	1	*		0	
T. 1 * * 1 *		-	0		1	*		0		*	*	1	0		Ó	
T 1 * 1 *			0		*	1	*		0		I*	Ó	1			0
T. 1 * 1 * *			-	٥		*	1	*		0	lo	*	Ť.			Ō
T ₁₇	0	*	1 *	-	0		Ē			-	Ō			1	*	Õ

表3 Configuration matrixの一部(\\はAl原子サイト)

						r,		-				Г						T,	ų	-						٦	33					۲,	J	
	1	2 3	4	5	6	7	8 9	1	10	11	12	ī	2	3	4	5	6	7	8	9	10	11	12	1	3	5	7	9	11	1	3	57	9	11
T1.8	1 .	* 1	*	*	7							Г		_			0		*	1	*		0	0	*	1			0	Γ		*	*	
Tis					٠,	•١	1		*	1	*		0)		1	٠		0					0			1	0	٠			* 1		
T27	lo	*	1	*		*	`							٠	1	*		١	*				1		*		*			0	*	1		0
T.,		0	0			• 1	0 1		1	0	*	•					٠			٠	٠				1			\			0		1	
T41	*	•							*	*		1	1	0	1		0	0	0		٠	٠		1			0			Ν		1		
T411	•	* *								*	*	Į.	4			0	0	0			0	1	1			0	_		1			1		\mathbf{i}
Sum	1	* 1	1	*	1	*`		2	1	1	*	1	1		1	1	*	/	*	1	*	1	2	1	1	1	1	/	1	Ν	*	12	2 1	/

表4 トポロジカルに独立な8種のAI原子配列

I	T _{1.6}	T _{1.8}	T _{2.7}	T _{3.9}	T _{4.1}	T _{4.11}	
Π	T _{1.1}	T _{1.7}	T _{2.12}	T _{3.9}	T _{4.1}	T _{4.5}	
Ш	T _{1.1}	T _{1.3}	T _{2.5}	T _{3.11}	T _{4.1}	T _{4.9}	
IV	<u>T</u> 1.4	T _{1.7}	T _{2.11}	T _{3.5}		T _{4.9}	
v	T _{1.5}	T _{1.6}	T _{2.3}	T _{3.9}	<u>-</u> 4.1	4.11	
VI	T _{1.7}	T _{1.9}	T _{2.11}	T _{3.5}	4.1	4.3	
M	T _{1.7}	T _{1.11}	T _{2.9}	T _{3.3}	T4.1	T4.11	
VI	T _{1.11}	T _{1.12}	T _{2.9}	13.3	14.1	4.5	

遠く離れていることを示す(*については後に述べる)。

Connectivity matrix の中から, Al 原子が存在する であろうn個のTサイトのn列分を組み合わせた行 列と各行の和を示したのがconfiguration matrix であ る。その例を表3に示す。行の和がnであればその サイトのSi はSi(nAl) の結合状態にあることを示し ている。この組み合わせの検討の結果, Si(nAl) の 分布が実測値と一致しているもののみがその結晶の Al 配置である。Loewenstein則のみの制限下ではそ の組合せの数は数百もあるが, NMR スペクトル実 測によるSi(nAl) 分布と図4の配置を満足するもの は表4に示す8通りの組合せしか存在しない。

2.3 候補の絞込み

脱水ゼオライト中の骨格外陽イオンはAI原子近傍 に位置しているので,陽イオンの実測位置からAlサ イトを推定できる。モルデナイトには5種類のイオ ン交換サイトがあり,イオンの分布はMortier等に より詳細に調べられている¹⁴⁾。前記8通りのAI分布 候補についてMortier等によるイオン分布との整合 性を調べると,配列Iのみが実在結晶と同じイオン 交換サイトを有し得るとの結論を得た。

図1から分るように、 $T_2 \ge T_4$ はメインチャンネル に面したサイドポケット入口の8員環上に、そして $T_1 \ge T_3$ はサイドポケットの奥の8員環上に存在する。 したがって、Si/A1比の増大と共にメインチャンネ ルサイトのAlが優先的にSiに置換される。

3. 5-ring(2AI) 回避則の発見¹³⁾ とその妥当性

モルデナイトの²⁹Si MAS NMR スペクトル中には Si(0Al) がたくさんある。このSi をAl で置換しても Al-O-Al 回避則が破られることはない。したがって Al 含有量は [Al] >8となってもよいのではないか?

実験的に [Al] ≤8となるのは何故か?これは他の ハイシリカゼオライトにも共通の疑問であり, Al-O-Al 回避則の他に何らかの回避則が働いているに違 いない,と推定した¹⁵⁾。

これを求めるためにAI規則分布を再検討すると, 配列II~VIIIにはAIを2個含む5員環(以後,5ring(2AI)と略記)が存在するが,配列Iのみには無 いことが分った。また、5員環中のAIが1個以下の 配列を計算で求めると,配列I以外に3種の組合せ が存在するが,それらの配列ではSi(nAI)スペクト ルが実在結晶と全く異なる¹³⁾。可能な配列の中の一 種のみが実現する理由は現段階では明らかではない。 結晶化過程における陽イオンを含むアルミノシリケ ート種および骨格構造全体の安定性に関与している と推定される。

前記のconnectivity matrix において、*は"同一 5員環に属する"ことを意味している。5-ring(2Al) 回避則を満たすためには、configuration matrixの 各行は"\"と"*"を同時に含んではならない。

5-ring(2A1) 回避則の妥当性を調べるため、5員環 を含む数種のゼオライトについて、"*"を含む connectivity matrixを作成して検討を行った。単位 胞あたり入り得るA1の最大数([A1]_{max})、すなわち Si/A1比の最低値を計算して実験値と比較すると表5 に示すように両者は良く一致していた。

そこで、新法則を適用してフェリエライト骨格中のAI原子分布の検討を行った。36列×36行の connectivity matrix (フェリエライト単位胞あたり

表5 5員環を含むゼオライト骨格中の最大AI原子数

			[A]	_{max} /u.c
code	zeolite	typical formula	calculated	experimental
MOR	mordenite	$Na_{8}[(AIO_{2})_{8}(SiO_{2})_{40}] \cdot 24H_{2}O$	8	8
FER	ferrierite	Na ₂ Mg ₂ [(AlO ₂) ₆ (SiO ₂) ₃₀] •18H ₂ O	6	6
HEU	clinoptilolit e	(Na,K) ₆ [(AlO ₂) ₆ (SiO ₂) ₃₀] - 24H ₂ O	8	6.9
HEU	heulandite	$Ca_{4}[(AIO_{2})_{8}(SiO_{2})_{28}] \cdot 24H_{2}O$	8	8.5(natural)
MFI	ZSM-5	$Na_{n}[(A O_{2})_{n}(SiO_{2})_{96-n}] \sim 16H_{2}O$	16	<8

の骨格原子数=36)を作成し、入り得る最大Al数6 の場合の配列組合せを求めた。Al原子分布の結晶学 的対称性の高いものほど結晶は安定であり、それが 実現しているとすると、該当する組合わせは2種し かない。この配列から計算されるSi(nAl) $(n = 0 \sim$ 2)は実測値とほぼ一致している。この2種のAl原 子分布の特徴は6員環にAl原子が3個づつ入ってい ることであり、その違いはPnmmかI2mmかの対称 性の違いだけである¹³⁾。

また,HEU型ゼオライトではクリノプチロライト とヒューランダイトについての解析を行った。合成 および天然クリノプチロライトでは5員環則が守ら れているが,天然ヒューランダイトでは5員環則が 破られているために耐熱性が劣ることが明らかとな った¹⁶⁾。5員環則にはこのような例外が存在する。5 員環に2個のAI原子が入ると非常に不安定になるこ との好例である。

おわりに

フォージャサイト骨格中のAl, Si原子配列の検討 結果から, Si(2Al) は静電的に不安定なためにSi/Al 比が同じならばSi(2Al) が最も少ない配列が安定と なる,というDempsey則が提唱されている¹⁷⁾。そ の後,Si/Al比の低い数種のゼオライトについて Dempsey則が成立するとの報告がある^{18,19)}。しかし ながら上記のように,5員環を多く含みかつSi/Al比 が比較的高いゼオライトではこの法則は全く成立し ていない¹⁵⁾。

実験結果から求められた5-ring(2A1)回避則は Loewenstein則を補完する経験則であり、その意義 と信頼性は大きい。5員環を含むゼオライトがハイ シリカになり得るのは、この回避則が成立している からこそである。結晶学的考察を加えればゼオライ ト中のAI原子サイトを決定することが可能であり, AI原子分布がゼオライトの物性と特性に大きく関与 していることは上記のとおりである。固体酸特性の 解析やゼオライトの結晶化機構を考える上でも大き な足がかりとなるだろう。

ハイシリカモルデナイトのキャラクタリゼーショ ンを自らの手でと思い立ってから20年近い月日が流 れた。非常に長い時間はかかったが,企業の一研究 者の力ではとてもここまでの解析は不可能であった。 恩師である豊橋技術科学大学名誉教授 高石哲男先 生の御指導のおかげである。手取り足取りして懇切 丁寧に教えて頂き,解析研究の本質を体験させてい ただいた。connectivity-configuration matrices法は 高石先生の独創であり、5員環則も先生の発見であ る。この新法則を "高石則"と名づけることを学会 に提案して,長年の御指導に対して御礼を申し上げ たい。

文 献

- L. B. Sand, Molecular Sieves, Society of Chemical Industry, London, 71 (1968).
- 2) O. J. Whittemore, Amer. Mineral., 57, 1146 (1972).
- S. Ueda, H. Murata, and M. Koizumi, Amer. Mineral., 65, 1012 (1980).
- 4) S. Ueda, T. Fukushima, and M. Koizumi, J. Clay Science Jpn., 22, 18 (1982).
- K. Itabashi, T. Fukushima, and K. Igawa, ZEOLITES, 6, 30 (1986).
- 6) K. Itabashi, T. Okada, and K. Igawa, Proc. 7th Intern. Zeolite Conf., 369 (1986).
- W. J. Mortier, J. J. Pluth, and J. V. Smith, *Mat. Res. Bull.*, 10, 1319 (1975).
- M. Ito and Y. Saito, Bull. Chem. Soc. Jpn., 58, 3035 (1985).
- 9) E. G. Derouane and J. G. Fripiat, Proc. 6th Intern.

Zeolite Conf., 717 (1983).

- P. Bodart, J. B. Nagy, G. Debras, Z. Gabelica, and
 P. A. Jacobs, J. Phys. Chem., 90, 5183 (1986).
- 11) J. D. Sherman and J. M. Bennet, *Molecular Sieves*, ACS 121, 52 (1973).
- 12) K. Shiokawa, M. Ito, and K. Itabashi, ZEOLITES, 9, 170 (1989).
- T. Takaishi, M. Kato, and K. Itabashi, ZEOLITES, 15, 21 (1995).
- 14) W. J. Mortier, Compilation of Extra Framework Sites in Zeolites, Butterworth Scientific. Ltd., Guilford,

54 (1982).

- T. Takaishi, M. Kato, and K. Itabashi, J. Phys. Chem., 98, 5742 (1994).
- M. Kato, S. Satokawa, and K. Itabashi, Stud. Surf. Sci. Catal., 105, 229 (1996).
- E. Dempsey, Molecular Sieves, Society of Chemical Industry, London, 293 (1968).
- 18) M. Sato, Chem. Lett., 1195 (1985).
- M. Sato, K. Maeda, and K. Hirasawa, Stud. Surf. Sci. Catal., 84, 589 (1994).

Characteristic Properties of Synthetic Mordenite and Discovery of 5-ring(2Al) Avoidance Rule

Keiji Itabashi

Nanyo Research Laboratory, Tosoh Corporation

Our analytical studies of the determination of ordered distribution of Al atoms in the framework of synthetic mordenite are reviewed. The existence of a super-structure with 3c cell constant was found by adsorption properties and XRD data of the mordenite (Si/Al=5-10). Al sites preferentially substituted by Si were estimated from ²⁹Si MAS NMR data. The ordered distribution of Al atoms in the framework was determined by connectivity-configuration matrices method. The obtained result consistently explained the observed composition-dependence of the characteristic properties of the mordenite. A new rule named as "5-ring(2Al) avoidance rule" in which a 5-ring holding 2Al atoms was unstable was discovered by this study. One can explain various phenomena unsolved in zeolites containing 5-rings by assuming the new rule.

Key Words : mordenite, Al distribution, connectivity-configuration matrices method, 5-ring(2Al) avoidance rule