《解説》

ゼオライト包接場を用いた環境調和型ラクトン合成

柴田勝将*,^{†1}·平田千秋*·栗山恭直**·伊藤廣記**,^{†2}

*山形大学大学院理工学研究科博士前期課程物質生命化学専攻
**山形大学理学部物質生命化学科

天然香料としての利用など有用性が知られるラクトンに対する環境調和型合成法を確立するために、アルキル介在鎖末端にカルボキシル基、エステル基、ニトリル基、ならびにアミド基を有するアルケンを反応種とするゼオライト包接下の反応を検討した。焼成後のゼオライトに対する固体NMR測定の結果、Si/Al比がラクトン生成効率に影響を及ぼすことが明らかになった。上述した4種の反応種に対する温度効果の検討から、五員環ラクトン対六員環ラクトンの生成比に関する興味深い結果が得られた。併せて、本反応系の解析・設計を目的とした半経験的分子軌道法適用の可能性も検討した。

キーワード: ゼオライト, ラクトン, 環境調和型合成, 半経験的分子軌道法

1. はじめに

1.1 ラクトンの環境調和型有機合成法確立をめざして

ラクトンは有用天然化合物である果実香気や抗生 物質の基本骨格としての性質を有する化合物であ る¹⁾。すでに多くの合成例が報告されているが、環 境に負荷のかかる鉱酸の使用2)や環境負荷軽減を指 向した固体酸使用下の反応における副生成物形成³⁾ など解決すべき点が多い。一方、多孔質アルミノケ イ酸塩であるゼオライトは、形状特性を有する細孔 内にルイス (L) 酸点やブレンステッド (B) 酸点を 有することから低環境負荷な固体酸触媒として注目 されている。また、一般的な溶液下の分子内反応に おいては、反応種どうしの反応抑制のために高希釈 条件とすることから多量の溶媒を必要とするのに対 し、ゼオライト包接場が反応種の隔離に有効にはた らくことが期待でき、固体試料を用いた無溶媒反応 はもちろんのこと、 懸濁溶液条件下の反応にあって も多量の溶媒を必要とせず、資源節約の点からも環 境に調和した合成法となりうる。

ここでは、筆者らの研究グループが指向した、ゼオライトナノ包接場を利用した、アルケニルカルボン酸誘導体を反応種とする環境調和型ラクトン合成法についていくつかの例を紹介する。ところで、HSAB理論⁴によれば、酸素、ケイ素、およびアルミニウムを構成原子とするゼオライトは硬い試薬に分類される。一般的に柔らかい反応に分類される有機反応に対し、硬いゼオライトが有効にはたらく理由を解明できれば、有機反応に対するゼオライトの利用拡大が期待できる。半経験的分子軌道法を用いた解析手順と併せて、解析例の一端を紹介する。

1.2 ゼオライトの触媒作用と固体酸性の発現

ゼオライトの触媒作用と固体酸性の発現について はすでに多くの成書⁵⁻⁷⁾で触れられているが、本反 応系を理解するうえで必要となるため、その概略に 触れることにする。

ゼオライトの触媒特性は、その多様な構造と性質にある。しかも、多くの酸触媒とは異なり、結晶性であるゼオライトは、必要とされる性質を持った物質の選択とその制御が容易である。ゼオライトの触媒作用には、以下に示した多様な性質がいろいろな形で関与する。

1) ブレンステッド酸としての作用と酸強度の多 様性

受理日:2012年10月1日

〒990-8560 山形県山形市小白川1-4-12

山形大学理学部物質生命化学科

E-mail: †1 s11c309m@st.yamagata-u.ac.jp

†² itohh@sci.kj.yamagata-u.ac.jp

Copyright \odot 2012 Japan Zeolite Association All Rights Reserved.

- 2) 骨格酸素アニオンに基づく塩基性
- 3) 骨格外金属イオンおよび遷移金属錯体による 触媒作用
- 4) 骨格内金属イオンに基づく触媒作用
- 5) 細孔構造に基づく選択性の制御(形状選択 性)
- 6) 細孔内の電場勾配による反応物の分極
- 7) 異常電子価. 極性中間体の安定化

固体酸性を示す水酸基は、ゼオライト骨格の部分構造に起因しており、次のように導入される。HYゼオライトは、NH4Yを350℃以上で焼成することで得られる。このとき酸性プロトンは、ゼオライト中ではアルミニウムとケイ素に架橋した酸素に結合し、水酸基として存在する。したがって、室温で測定した赤外吸収(IR)スペクトルには水酸基の伸縮振動が観測される。この吸収は、ピリジンの吸着により消失し、代わりにピリジニウムイオンの吸収が出現する。このことは、アルミニウムとケイ素に架橋した水酸基が塩基分子であるピリジンに対してプロトン供与能を有することを示している。すなわち、架橋水酸基はB酸点となる。

2. ゼオライトナノ細孔を反応場とする環境調和型 ラクトン合成法の検討⁸⁾

2.1 ゼオライトに対する前処理ならびに機器測定

反応に対するゼオライト細孔形状の影響を検討すべく、HMOR, HY, USY, H-ZSM-5などを選択した。ここでは、FAU型ゼオライトであるHYを例として、ゼオライトを活性化するための前処理や機器測定について以下に記す。

HYに対する熱重量分析および示差熱分析 (TG/DTA) 測定により、脱水に伴う質量減少などを確認した後、500℃での長時間維持において質量ならびに熱量に変化が見られなかったことから、反応前の焼成条件を、電気炉による空気下500℃ 15時間焼成とした。焼成温度の違いによりゼオライトの構造に変化が生じるという Lutz の指摘⁹⁾を踏まえ、500℃で焼成した HY に対する粉末 X 線回折 (XRD)を行い、結晶構造の維持を確認した。焼成後の HYを、200℃まで放冷した後、使用直前までデシケーター中で真空保存した。

岡本らは、XPSよるA, X, Y, MOR型ゼオライト に対するキャラクタリゼーションの結果、外表面組 成と内表面組成におけるSi/Al比に関する情報として、未処理のゼオライトではほぼ等しく、アンモニウムイオンでイオン交換後、脱アミノ化により調製したH型では外表面の脱アルミ化が顕著であると報告している¹⁰⁾。そこで、固体NMR測定法¹¹⁾を用いて、²⁹Si NMR測定によるHYのSi/Al比ならびにSiO4周りのAl置換数の算出、²⁷Al NMR測定による骨格内外のアルミニウムの存否確認を行った。²⁹Si-NMR測定によるSi/Al比の誘導式を次に示す。

$$(\mathrm{Si/Al})_{\mathrm{NMR}} = \sum_{n=0}^{4} \mathrm{A} \, \mathrm{Si}(n\mathrm{Al}) / \sum_{n=0}^{4} \frac{n}{4} \, \mathrm{A} \, \mathrm{Si}(n\mathrm{Al})$$

焼成後のSi/Al比とAl置換数とを別個に定量化できることは、本反応系における反応場の指標を入手するうえで極めて重要な意味をもつ。すなわち、Si/Al比がAl置換数のばらつきを平均化した統計的な数値にとどまるのに対し、Al置換数は、その数値の0から3までの分布に基づいた酸強度の均質性に関する定量的な指標となり、反応の最適条件の探索ならびに再現性維持のために極めて重要な役割を果たす。

本実験で用いた合成機器ならびに分析機器は以下のとおりである。

合成機器:電気炉:必要に応じて ISUZU Muffle Furnace DSTR-13K, ISUZU Muffle Furnace ATR-11K, AS ONE 小型プログラミング電気炉 MMF-1のいずれかを使用。

分析機器: TG/DTA測定: DTG-60, 溶液試料および固体試料に対する NMR測定: 付属設備の交換を伴う JEOL NM-ECA500, IR測定: HITACHI 270-50 Infrared Spectrophotometer, GC-MS 測 定: SHI-MADZU GC-17Aを使用。

2.2 包接試料の作成

2.2.1 懸濁溶液法

所定量の反応種を加えたシクロヘキサン溶液 20 mLを暗所・窒素雰囲気下で30分間撹拌した後、あらかじめ焼成しておいた各種酸性ゼオライトの所定量を加えて再度30分間暗所、窒素雰囲気下で撹拌した。この懸濁液をろ過し、包接試料を作成した。また、ろ別したシクロヘキサン溶液に対する1H NMR 測定を行い、未包接反応種に対する定量結果を用いて包接量を確認した。

Alkenyl carboxylic acid

y-Lactone

δ-Lactone

表1 直鎖アルケニルカルボン酸およびラクトンを反応種とする包接反応¹⁾の結果

	C. I. at		D	1		Conditions					
Entry	Substr	ates	Proc	Products		10 h	60℃ 10 h				
	R=	n=	γ (R'=)	δ (R"=)	Yield [%]	γ:δ	Yield [%]	γ:δ			
1	Me	1	Me	_	85	_	No data	No data			
2	Н	2	Me	_	84	_	69	_			
3	Н	3	Et	Me	59	89:11	45	29:71			
4	<i>n</i> -Pr	1	<i>n</i> -Pr	Et	68	94: 6	32	96: 4			
5	Et	2	<i>n</i> -Pr	Et	68	94: 6	46	56:44			
6	Н	4	<i>n</i> -Pr	Et	57	85:15	58	12:88			
7	<i>n</i> -Pent	2	<i>n</i> -Hex	n-Pent	25	95: 5	32	36:64			
8	γ-Lactone (R'=	Et)	Et	Me	83	93: 7	No data	No data			
9	δ-Lactone (R"=	=Me)	Et	Me	58	90:10	No data	No data			

¹⁾ 典型的な反応条件;反応種;100 mg,HY (Si/Al比:3.69); 2.0 g.

2.2.2 ミリング法

アミドなど反応種が固体である場合, 懸濁溶液下における包接作業を経由せず, 反応種とゼオライトと直接ミリングして試料調製を行うこともできた。

2.3 包接反応および後処理

包接反応は、固相熱浴反応とした。すなわち、所 定の温度および時間制御下、電気炉内において包接 試料を加熱した無溶媒反応である。一般的な溶液下 の分子内反応において必要とする多量の溶媒を全く 使用しない点を、強調したい。また、このような固 体試料は、熱浴条件に替わるマイクロウェーブ照射 実験の適用も容易となる。

反応終了後,包接試料に対するアセトンもしくは ジクロロメタン抽出,減圧濃縮を経て、NMRなら びにGC-MS測定により生成物の同定・定量を行っ た。

2.4 実験結果および考察

2.4.1 直鎖アルケニルカルボン酸を反応種とする 包接反応

ラクトン化における位置選択性の検討

直鎖カルボン酸の包接反応の結果を表1に示した。3-および4ペンテン酸を反応種とする100℃の

反応 (Entry 1,2) では、同一生成物として、五員環を有する γ バレロラクトン (5-methyldihydrofuran-2(3H)-one) のみを高収率で与えた。このような結果に対する機構として、3-ペンテン酸では endo型閉環が、4-ペンテン酸では exo型閉環がそれぞれ選択的に進行したとするか、あるいはアルケン部位の転位後に両者とも同一型の閉環が後続したとするかについては、今後の検討を要する。

分子鎖長を一つ増やした 5-ヘキセン酸の反応 (Entry 3) では、五 員 環 ラクトン (5-ethyldihydrofuran-2(3H)-one) と六 員 環 ラクトン (6-methyl tetrahydro-2H-pyran-2-one) とが競争的に生成した。興味深いことにこれらの生成比には温度依存性が観測された。高温における優先生成物である五員 環 ラクトンならびに低温における優先生成物である 六 員 環 ラクトンは、それぞれ熱力学的支配、速度論的支配によるものと考察される。ここで生成した五 員 環 ならびに六 員 環 ラクトンを新たな反応種として、それぞれの包接反応を 100° C 下で検討した結果 (Entry 8, 9)、ラクトンの生成比は、5-ヘキセン酸の反応結果 (Entry 3) とほぼ等しい9:1の比を与えた。このことは、包接反応中に両ラクトン間の平衡 過程が存在する可能性を示唆した。

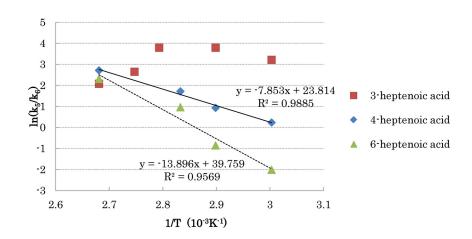
さらに鎖長を一つ増やした3-、4および6-ヘプテン

酸の反応 (Entry 4, 5, 6) においても五員環ラクトン (5-n-propyldihydrofuran-2(3H)-one) と六員環ラクトン (6-ethyl tetrahydro-2H-pyran-2-one) とが競争的に生成した。3-ヘプテン酸における六員環ラクトン生成については、アルケン部位の転位を経由する過程、もしくはアルケン部位の転位を必要とせずに生成できる五員環ラクトン生成後の平衡を経由する過程が考えられる。これに対して、6-ヘプテン酸からの五員環および六員環ラクトンの生成は、アルケン部位の転位過程無くしては生成できない。3種のヘプテン酸の反応に対する温度効果の詳細な検討については、2.4.2で述べる。

4デセン酸の反応 (Entry 7) から得られた五員環 および六員 環 ラクトン (それぞれ, 5-n-hexyl dihydrofuran-2(3H)-one, 6-n-pentyltetrahydro-2H-pyran-2-one) は、いずれもモモの香料成分として知られる化合物 $^{1)}$ であり、有用天然物の環境調和型合成の一例とすることができた。また、それらの位置 選択性は、5-ヘキセン酸の反応 (Entry 3) に類似する温度依存性を示した。

2.4.2 3-, 4-および6-ヘプテン酸の反応における位置選択性に対する温度効果の検討

検討結果をEyring plot として図1にまとめた。 五員環ラクトンと六員環ラクトンの生成が同じ中間 体を経由すると仮定し、絶対温度の逆数に対する両 ラクトン生成比の自然対数値をEyring plot した場 合,同一生成物を与える3種の反応種に対して,全く同一の直線が得られるはずである。ところが,3ペプテン酸の反応では曲線を,4および6ペプテン酸の反応では傾きの異なる直線を与えた。この結果は,ペプテン酸の競争的ラクトン化の律速段階として複数の因子が関与していることを示唆する。たとえば,分子鎖の内側から外側へのオレフィン部位の転位,分子鎖の外側から内側へのオレフィン部位の転位,さらにラクトンに至る閉環過程などがその候補となりうる。今後,さらに詳細な反応機構の解析を必要とする。


(12)

2.4.3 5-ヘキセン酸を反応種とする再利用ゼオライトによる包接反応

環境調和型合成法としての観点から、一度反応に使用したゼオライトを再度焼成することで再利用することができれば、資源の節約上たいへん好ましい。5へキセン酸を用いた検討結果を表2に示した。初回から4回目へ推移するに従い、生成量の若干の低下とともに、六員環ラクトンに対する五員環ラクトンの優先性が低下した。

小野らは、ゼオライトの固体酸性はゼオライト骨格を形成する Si/Al 比の影響を受け、Si/Al 比の上昇は以下のような特性を示すことを指摘している⁷⁾。

1) 固体酸密度が低下し、水素移行反応が抑制される。

4-hept $\Delta\Delta$ H \ddagger =65.2kJ/mol , $\Delta\Delta$ S \ddagger =197.7J/mol 6-hept $\Delta\Delta$ H \ddagger =115.4kJ/mol, $\Delta\Delta$ S \ddagger =330.2J/mol

図1 3-, 4-および6-ヘプテン酸の反応における位置選択性に対する温度効果の検討

~1177		1)		_				Produc	ts [%]		
利用 回数	Sub. [mg]	HY ¹⁾ [g]	Sub./ S.C. ²⁾	Temp. [℃]	Time [h]	Total	Recov	Lact	tone	- Others ³⁾	Ratio
	[6]	-61	0.0.	[0]	[11]	yield	Recov.	γ	δ	- Others	γ : δ
1	45.6	1.1	1/2.0	100	10	69	n.d.	57	8	4	89:11
2	51.7	1.1	1/1.8	100	10	62	0.6	34	23	5	60:40
3	52.9	0.9	1/1.3	100	10	69	n.d.	32	32	5	49:51
4	41.3	0.7	1/1.4	100	10	51	0.8	23	23	5	50:50

表2 5-ヘキセン酸を反応種とする再利用ゼオライトによる包接反応の結果

1) 再生条件; すべて500℃, 15時間に統一.

XRDの測定結果;すべてにおいてアモルファス化は確認されず。

²⁹Si NMR の測定結果;初回および4回目のSi/Al比は54±2%でほぼ一定.

²⁷ AI NMR の測定結果;[骨格内4配位:骨格外5配位:骨格外6配位] の値が、初回の [17.2:69.3:13.5] から4 回目の [12.8:68.2:19.0] に変化した.

- 2) ゼオライトのスーパーケージに対する反応種の比.
- 3) アルケンの転位に伴う3-および4へキセン酸の生成.
 - 2) 結晶の安定性が向上し、耐水熱性が高くなる。
 - 3) 静電場強度が減少するため、疎水性分子を吸 着しやすくなる。

1)の水素移行反応の抑制は、ラクトン形成の位置選 択性に対しても大きな影響を与える。表2の脚注に 示したとおり、焼成を繰り返したゼオライトに対す る種々の測定の結果、XRDにおいては構造のアモ ルファス化は確認されなかった。²⁹Si NMR ではSi/ Al比に変動は見られなかったものの、 ³⁷ Al NMR で 骨格内4配位 Alの減少および骨格外6配位 Alの増 加に伴うゼオライト内表面のSi/Al比の上昇が確認 された。これは岡本らが報告した焼成による外表面 への脱Al化と一致する¹⁰⁾。ゼオライト内表面のAl の脱離は、計算においてB酸点のLUMOのエネル ギー準位の上昇をもたらし、かつB酸点の減少によ り熱力学的支配条件で生成する五員環ラクトンの生 成を抑制する結果となった。したがって、ゼオライ トの再利用に際して反応の再現性を確保するために は、固体NMR測定による内表面のSi/Al比の確認 が必要であることが明らかとなった。次節では、さ らに理解を深めるためにSi/Al比の異なるHYを用 いた包接反応を検討することにした。

2.4.4 4-ペンテン酸を反応種とする Si/AI 比の異なる HY を用いた包接反応

2.1 で述べたとおり、焼成後のSi/Al比と SiO₄ 周

りの Al置換数とを別個に定量化できることは、本 反応系における反応場の指標を入手するうえで極め て重要な意味をもつ。4ペンテン酸を用いた検討結 果を表3に示した。表中には、焼成後の各HYに対 する Al置換数の分布も掲載した。懸濁下、室温30 分の反応にも関わらず、最も高い46%の収率で五 員環ラクトンを生成した HSZ-331HSA における Si/ Al比が11.1, Si(1Al) の比率が36.0%であった(Entry 2)。これらの数値は、本反応系に対する最適条 件として、3で述べる分子軌道論を用いた反応場構 築の際の参照値として活用することにした。

2.4.5 側鎖を有するアルケニルカルボン酸を反応種とする包接反応

ラクトン化における立体選択性の検討

4ペンテン酸の3位にメチル基もしくはフェニル 基を導入したラセミ体の反応種を用いた検討結果を 表4に示した。両反応種とも、五員環ラクトンの生 成率は、母骨格の等しい4ペンテン酸の反応結果 (表1, Entry 2; 100℃下の収率; 84%) と同等の値を 示し、それぞれ80%、78%となった。興味深いこ とは、各々の立体選択性が逆の温度依存性を示した ことである。すなわち、メチル置換体では、高温時 における cis 体の優先生成(熱力学的支配)ならび に低温時における trans 体の優先生成(熱力学的支配)な 配)を示したのに対し、フェニル置換体では、高温 時における trans 体の優先生成(熱力学的支配)な

表3	4ペンテン	/ 酸を反応種とす	⁻ る Si/Al 比の異なる HY	を用いた包接反応1)の結果
----	-------	-----------	-------------------------------	---------------

Entry	HY zeolite	Si/Al比 ²⁾ -		Al置換数の	Yield	Yield [%] ³⁾		
Entry	пт геопте	SI/AIIL -	0	1	2	3	Recover	Product
1	CBV-600	55.8	92.8	7.2	_	_	61.7 ± 8.6	10.0 ± 3.6
2	HSZ-331HSA	11.1	64.0	36.0	_	_	25.8 ± 2.7	46.3 ± 2.2
3	JRC-Z-HY5.5	4.68	39.9	34.6	25.5	_	74.8 ± 2.8	2.6 ± 0.7
4	Lot.No.101217	2.83	22.3	31.2	29.3	17.2	61.4 ± 5.1	3.4 ± 0.2

- 1) 典型的な反応条件;反応種;50 mg, HY (Si/Al比:3.69);1.0 g, シクロヘキサン懸濁溶液条件下,室温,30分撹拌.
- ²⁾ 煆焼後の各HYに対する ²⁹Si NMR 測定による値.
- 3) 生成物; γ -バレロラクトン (5-methyldihydrofuran-2(3H)-one).

表4 側鎖を有するアルケニルカルボン酸を反応種とする包接反応1)の結果

		Duo	ducts	Conditions						
Entry	Substrates	Pro	aucts	100℃	10 h	60℃ 10 h				
		cis	trans	Yield [%]	C : T	Yield [%]	C:T			
1	Me O OH	o Me	o o Me	80	55 : 45	78	41:59			
2	Ph O OH	Ph	O Ph	78	30:70	51	41:59			

1) 典型的な反応条件; 反応種; 50 mg, HY (Si/Al比: 3.69); 1.0 g.

らびに低温時における trans 体生成率の減少 (速度 論的支配下における cis 体の増加) が観測された。 このような立体選択性に対する制御要因の解明は、 多くの天然物にみられる光学異性体の生成機構に関 連する重要な課題であり、継続的な検討を必要とす る。

2.4.6. 環状部位を有するアルケニルカルボン酸を 反応種とする包接反応

環状部位を有する2-シクロペンテン-1-酢酸および1-シクロヘキセン-1-酢酸を反応種とした検討結果を表5に示した。前者の100℃の反応では、穏やかな収率で単一生成物である五員環ラクトン (2-oxabicyclo[3,3,0]octan-3-one)を与えたのに対し、60℃の反応では、五員環ラクトンを主生成物とする六員環ラクトン (2-oxabicyclo[3,2,1]octan-3-one)の競争的生成が観測された (Entry 1)。後者の100℃および60℃の反応では、痕跡量の五員環ラクトン (7-oxabicyclo[4,3,0]nonan-8-one)の生成を確

認したが定量には至らなかった(Entry 2)。環状アルケン部位の立体的制約がラクトン化に大きな影響を及ぼしたと考えられるが、このような環状部位を有するカルボン酸の反応性を明らかにすることは、ワインラクトンなど多環性天然化合物を合成する上で重要な知見となることから、継続的な検討を進めていきたい。

2.4.7 エステル, ニトリル, ならびにアミドを反 応種とする包接反応

標題に示した4種の4ペンテン酸誘導体を反応種とした包接反応の結果を表6-1に、4種の5-ヘキセン酸誘導体を反応種とした包接反応の結果を表6-2に示した。

4ペンテン酸誘導体の反応では、主生成物として 同一の五員環ラクトンを与えたが、生成率の低いニ トリルおよびアミドの反応に比べて、カルボン酸お よびエステルからの収率は良好な値を示した。4ペ ンテンニトリルの反応では、副生成物として4ペン

表5	環状部位を有する	アルケニルカルボン	一酸を反応種と	する包接反応 ¹⁾ の結果
----	----------	-----------	---------	--------------------------

		Dund	Products		Conditions						
Entry	Substrates	Frou	ucts	100℃	10 h	60℃ 10 h					
		γ-Lactone	δ -Lactone	Yield [%]	γ : δ	Yield [%]	γ : δ				
1	OH	0=0		58	100:0	54	84:14				
2	ОН		_	trace	_	trace	_				

- 1) 反応種;50 mg, CBV-600 (Si/Al比:55.8); 1.0 g.
- ²⁾ Trace; NMRにより生成物の確認はできたが、反応種のピークと重なり定量できなかった.

$$(CH_2)_n X \qquad \underline{\text{in zeolite}} \qquad R' \qquad O \qquad R'' \qquad O$$

X; COOH, COOEt, CN, CONH₂

γ-Lactone

 $\delta\text{-Lactone}$

表6-1 4ペンテン酸, エステル, ニトリル, ならびにアミドを反応種とする100℃での包接反応の結果

	Substr	ates	НҮ		m:			Produc	ts [%]		
Entry	2/V			Sub./S.C.	Time (h)	Total	D	Lact	tone	Othona	Ratio
	n=2/X [mg] [g] (h		(11)	Total	Recov.	$\gamma (R'=Me)$	$\delta (R''=H)$	Others	γ:δ		
1	-СООН	91.6	2.0	1/2.0	10	84	n.d.	84	_	n.d.	_
2	-COOEt	48.2	1.2	1/2.2	1	68	n.d.	68	_	n.d.	_
3	-CN	100.8	1.9	1/1.0	24	49	23	16	_	$10^{1)}$	_
4	-CONH ₂	44.7	1.0	1/1.5	20	48	17	31	_	n.d.	

¹⁾ アミド形成.

表6-2 5-ヘキセン酸、エステル、ニトリル、ならびにアミドを反応種とする100℃での包接反応の結果

	Substra	ates						Produ	ıcts [%]		
Entry	2/V	- I		Sub./S.C.	Time - (h)	Taka1	Dagger	Lac	tone	Othomo	Ratio
	n=3/X	[mg]	[g]		(11)	Total	Recov.	$\gamma (R'=Et)$	δ (R"=Me)	Others	γ:δ
1	-СООН	89.9	2.0	1/2.0	10	58	n.d.	52	6	n.d.	89:11
2	-COOEt	45.7	1.1	1/1.8	10	56	n.d.	50	6	n.d.	89:11
3	-CN	46.8	1.0	1/1.4	15	6	2	1	3	n.d.	25:75
4	$-CONH_2$	45.7	1.0	1/1.4	10	47	36	1	10	n.d.	9:91

テンアミドが観察された。

5-ヘキセン酸誘導体の反応では、五員環および六 員環ラクトンの競争的生成が観察された。エステル はカルボン酸と同等の反応性を示した。これに対し て、ニトリルおよびアミドの反応は、カルボン酸や エステルと比較して低く、ラクトン化の位置選択性 が逆転する結果を与えた。

5-ヘキセン酸をはじめとする4種の誘導体を反応 種とした包接反応における五員環および六員環ラクトンの競争的生成に対する温度効果を比較検証し

表7 5-ヘキセン酸、エステル、ニトリル、ならびにア ミドを反応種とした五員環および六員環ラクト ンの競争的生成に対する活性化パラメータ

Substrates	$\Delta\Delta H^{\ddagger} (kJ/mol)$	$\Delta\Delta S^{\ddagger} (J/mol)$
methyl 5-hexenoate	39.7	122.5
5-hexenoic acid	71.5	209.0
5-hexenenitrile	162.2	432.6
5-hexenamide	250.8	659.6

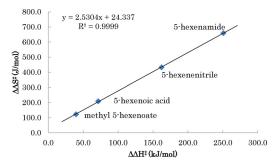


図2 表7の結果に基づいたIsokinetic plot

た。各反応種に対して得られた活性化パラメータを表7に示した。これらの値を用いて作成した Isokinetic plotを図2に示す。図2が示す4種の反応種に対する極めてよい直線性は、これら4種の競争的反応が同一の反応機構を経由することを示唆する。

当初、ニトリルおよびアミドを反応種とした実験は、ラクタムの生成を期待したが、いずれの場合もラクトンを主生成物として与えた。焼成したゼオライトを用いたにも関わらず、ニトリルの反応が含酸素化合物のラクトンを与えたことは、反応系中に水が残存したことを示唆する。結果として、ゼオライト包接場を用いたラクトン合成における反応種としての適性範囲が、カルボン酸やエステルにとどまらずニトリルやアミドも許容であることを明らかにした。

3. 反応場の評価と設計に向けて

3.1 ゼオライト内表面に関する実験による定量的 解析

岡本らは、XPS よる A, X, Y MOR 型ゼオライト に対するキャラクタリゼーションの結果、2.1.1 で触れた Si/Al 比に関する情報に加えて、次のような 指摘を行っている 10 。ゼオライトに対して吸着・

触媒能を期待する際、細孔内のカチオン分布、カチオンや格子酸素の電子状態に関する知見が重要であり、O1s準位の結合エネルギー(BE)は、Si/Al組成比に依存する。このBEの変化を左右する格子酸素の電荷密度は、ほとんど構造に依然せずアルミニウム含有量と共に増加する。XPSで求めたO1s準位のBEがゼオライト格子酸素の塩基強度の良い尺度となる。また、ゼオライト細孔内の塩基サイトの不均質性についても言及している。一方、ゼオライト中のルイス(L)、ブレンステッド(B)各酸点のXPSによる定量化は、各種ゼオライトに対するピリジン吸着の測定により行われ、H-ZSM-ピリジン系に対する測定値;398.7、400.3、402.1 eVが、それぞれL酸点、弱いB酸点、強いB酸点に帰属、定量化されている。

3.2 ゼオライトを包接場とした有機反応に対する 分子軌道論的解析

すでに、メタノールのオレフィン化 (MTO) 反応¹²⁾や、アルケンの転位反応¹³⁾に対する非経験的分子軌道計算の適用例が報告されている。ゼオライトに対する扱いは、前者が最小鎖状 Si-O-Al-O-Si クラスター構造を、後者は環状構造を含む54T クラスター構造を採用している。一方、MOPAC¹⁴⁾に代表される半経験的分子軌道法の適用は、バージョン更新毎にパラメータの充実が図られているにもかかわらず、ゼオライト系への適用はふさわしくないといわれている。

環境調和型有機合成を志向した筆者らの分子内反 応場の設計に際し、計算化学が評価すべき事項は、 以下のとおりである。

- 1) 包接前の溶液下,配座平衡状態にある反応種 の配座異性体に対する包接選択性(特に,閉 環に必要な配座異性体に対する選択性)
- 2) 包接後の反応種における配座平衡の存否
- 3) 包接前後の反応種配座平衡における相違の有 無
- 4) 目的とする分子内反応の包接下における進行の成否
- 5) 反応種(または目的生成種)の包接に伴う安 定化エネルギーの相違確認

包接の可否については、反応種・包接場おのおのに 対する分子模型の比較から容易に判断できると思わ れがちだが、サイズ的には包接可能であっても、安定化が伴わない場合は困難となることが予測される。さらに、目的とする反応の成否を予見するためには、上述した1)から4)の各項目に関する定量的な検討が必要となる。すでにXPSによる実験解析でその重要性が指摘されているとおり、ゼオライト内表面のL,B各酸点および塩基点のエネルギー準位およびそれらの分布の確認が不可欠であり、各サイトと反応種との相互作用に伴う動的過程の解析が必要となる。5)については、目的生成種が、後続反応種と自発的に入れ替わる可能性を予見することにより、抽出操作の有無など、反応後の処理法の選択上、極めて重要な知見となる。

以上の観点から、本系に対する鎖状クラスターモデルの適用には限界があり、包接内表面部位の最小単位と反応種との間の動的過程の評価が必要となる。筆者らの研究室では、計算化学におけるソフト、ハードを含めた経済的コストならびに計算時間

コストの観点から、非経験的分子軌道法の適用が困難であり、改めて半経験的分子軌道法の利用を図ることとし、併せてゼオライト系への適用が適切ではないとされた原因を探ることにした。

3.3 半経験的分子軌道法の適用に向けて

3.3.1 PM5. PM6 および PM7 法による検証

ゼオライトの最小単位構造に相当するテトラヒドロキシシランやジシロキサン¹⁵⁾に対する構造最適化をPM5, PM6 およびPM7の各法を用いて行った結果,ケイ素-酸素-水素(もしくはケイ素)の構造に対して、PM5法では曲線構造を与えたのに対し、PM6 およびPM7法では直線構造を与えた。これにより、ゼオライトの基本骨格であるケイ素-酸素-ケイ素構造に対する PM6 および PM7法の適用が問題視される理由の一端が明らかになった。この結果を踏まえ、以後の計算には PM5法を用いることとした。

表8 SiOH_(4-n)H_n に対する標準自由エネルギー (ΔH⁰), 最高占有軌道 (HOMO) エネルギー準位, 最低非占有軌道 (LUMO) エネルギー準位の変遷¹⁾

H_n	ΔH° [kJ/mol]	Δ [kJ/mol]	HOMO [eV]	Δ [eV]	LUMO [eV]	Δ [eV]
0	-1312.4	0.0	-11.024	0.00	-0.697	0.00
1	-957.7	354.7	-10.68	0.34	-0.227	0.47
2	-588.6	723.8	-10.07	0.95	-0.0892	0.61
3	-243.6	1068.8	-9.93	1.09	0.1498	0.85
4	44.0	1356.4	-11.22	-0.20	1.29	1.99

¹⁾ FUJITSUのライセンスを取得したMOPAC2002 ver.3.5/PM5法による.

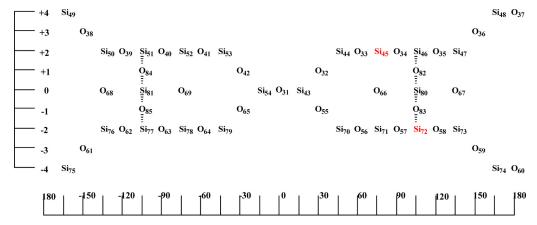


図3 PM5カルテシアン座標構築のためのH-MOR基本骨格の展開図

表9 展開図3を出発点とした, 3.3.3, 操作5)段階のAl-2置換H-MOR骨格のカルテシアン座標データベース

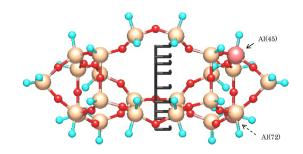
EF PM5		SISE LET DDMIN=0.			(11-WIO1	. H .III		
ATOM	CHEMICAL	BOND LENGTH	BOND ANGLE	TWIST ANGLE				
NUMBER	SYMBOL	(ANGSTROMS)	(DEGREES)	(DEGREES)				
(I)		NA:I	NB:NA:I	NC:NB:NA:I	NA	NB	NC	
1	XX	0.000000	0.000000	0.000000				01-27; 基準面 9 面
2	XX	1. 000000	0.000000	0.000000	1			
3	XX	1. 000000	90. 000000	0. 000000	2	1		
4	XX	1.003500	90. 000000	-90. 000000	1	2	3	
5	XX	1. 000000	90.000000	0.000000	4	1	2	
6	XX	1.000000	90.000000	90.000000	5	4	1	
7	XX	1.003500	90.000000	90.000000	1	2	3	
8	XX	1.000000	90.000000	0.000000	7	1	2	
9	XX	1.000000	90.000000	-90.000000	8	7	1	
10	XX	1.686380	90.000000	-90.000000	1	2	3	
11	XX	1.000000	90.000000	0.000000	10	1	2	
12	XX	1.000000	90.000000	90.000000	11	10	1	
13	XX	1.686380	90.000000	90.000000	1	2	3	
14	XX	1.000000	90.000000	0.000000	13	1	2	
15	XX	1.000000	90.000000	-90.000000	14	13	1	
16	XX	2. 170340	90. 000000	-90. 000000	1	2	3	
17	XX	1. 000000	90. 000000	0.000000	16	1	2	
18	XX	1. 000000	90. 000000	90. 000000	17	16	1	
19	XX	2. 170340	90.000000	90. 000000	1	2	3	
20	XX	1. 000000	90. 000000	0. 000000	19	1	2	
21	XX	1.000000	90. 000000	-90. 000000	20	19	1	
22	XX	2. 919230	90. 000000	-90. 000000	1	2	3	
23	XX	1.000000	90. 000000	0.000000	22	1	2	
24	XX	1.000000	90. 000000	90. 000000	23	22	1	
25	XX	2. 919230	90. 000000	90. 000000	1	2	3	
26	XX	1.000000	90. 000000	0.000000	25	1	2	
27	XX	1. 000000	90. 000000	-90. 000000	26	25	1 3	20.20
28 29	XX XX	10. 000000 10. 000000	90. 000000 90. 000000	0. 000000 0. 000000	1 1	2 2	3	28-30 ; 入力番号調整のためのダミー
30	XX	10. 000000	90. 000000	0. 000000	1	2	3	八月番号調金のためのグミー
31	0	4. 500000	90. 000000	180. 000000	1	2	3	31-42;
32	0	4. 952560	60. 805210	-179. 249160	4	5	6	H-MOR 上側 12 員環(右→左)酸素
33	0	4. 913660	31. 415120	-170. 956200	10	11	12	旧 MON 工阀 12 页绿(石 7年) 政宗
34	0	5. 000000	0. 291490	-171. 969190	10	11	12	
35	0	5. 151540	30. 167490	-8. 274750	10	11	12	
36	0	4. 607860	59. 848760	1. 942800	16	17	18	
37	0	4. 500000	90. 000000	-5. 544810	22	23	24	
38	0	4. 607860	120. 151240	1. 942800	16	17	18	
39	0	5. 151540	149. 832510	-8. 274750	10	11	12	
40	0	5. 000000	179. 708510	-171. 969190	10	11	12	
41	0	4. 913660	148. 584890	-170. 956200	10	11	12	
42	0	4. 952560	119. 194790	-179. 249160	4	5	6	
43	Si	5. 267980	73. 571870	180.000000	1	2	3	43-54 ;
44	Si	5. 629130	46. 439120	179.825490	10	11	12	H-MOR 上側 12 員環(右→左)T
45	A1	5. 619210	16. 234070	176.668500	10	11	12	Al 1 原子を含む
46	Si	5. 755280	14. 780330	-13. 333700	10	11	12	
47	Si	5. 531210	45.759010	1.303940	10	11	12	
48	Si	5. 313790	74. 477580	1.822330	22	23	24	
49	Si	5. 313790	105. 522420	1.822330	22	23	24	
50	Si	5. 531210	134. 240990	1.303940	10	11	12	
51	Si	5. 755280	165. 219670	-13. 333700	10	11	12	
52	Si	5. 619210	163. 765930	176. 668500	10	11	12	
53	Si	5. 629130	133. 560880	179. 825490	10	11	12	
54	Si	5. 267980	106. 428130	180. 000000	1	2	3	
55	0	4. 952560	60. 805210	179. 249160	7	8	9	55-65 ;
56 57	0	4. 913660	31. 415120	170. 956200	13	14	15	H-MOR 下側 12 員環(右→左)酸素
57	0	5. 000000	0. 291490	171. 969190	13	14	15	

表9 つづき

				244	_			
58	0	5. 151540	30. 167490	8. 274750	13	14	15	
59	0	4.607860	59.848760	-1.942800	19	20	21	
60	0	4. 500000	90.000000	5. 544810	25	26	27	
61	0	4.607860	120. 151240	-1.942800	19	20	21	
62	0	5. 151540	149. 832510	8. 274750	13	14	15	
63	0	5. 000000	179. 708510	171. 969190	13	14	15	
64	0	4.913660	148. 584890	170. 956200	13	14	15	
65	0	4. 952560	119. 194790	179. 249160	7	8	9	
66	0	5. 717100	18. 556350	-179. 995460	1	2	3	66-69 ;
67	0	5. 504560	45. 627130	-0.001850	1	2	3	H-MOR 上下渡環 5 員環酸素
68	0	5, 504560	134, 372870	-0.001850	1	2	3	
69	0	5, 717100	161. 443650	-179, 995460	1	2	3	
70	Si	5, 629130	46, 439120	-179, 825490	13	14	15	70-79 ;
71	Si	5. 619210	16. 234070	-176. 668500	13	14	15	H-MOR 下側 12 員環(右→左)T
72	A1	5. 755280	14. 780330	13. 333700	13	14	15	Al 1 原子を含む
73	Si	5. 531210	45. 759010	-1. 303940	13	14	15	
74	Si	5. 313790	74. 477580	-1. 822330	25	26	27	
75	Si	5, 313790	105. 522420	-1. 822330	25	26	27	
76	Si	5. 531210	134. 240990	-1. 303940	13	14	15	
77	Si	5. 755280	165. 219670	13. 333700	13	14	15	
78	Si	5. 619210	163. 765930	-176. 668500	13	14	15	
79	Si	5. 629130	133. 560880	-179. 825490	13	14	15	
80	Si	8. 163840	16. 317880	-0. 116200	1	2	3	80-81 ;
81	Si	8, 163840	163. 682120	-0. 116200	1	2	3	H-MOR 6 員環後背部渡環 5 員環 T
82	0	7. 030220	15. 453930	-3. 252100	4	5	6	82-85;
83	0	7. 028250	15. 451130	3. 252100	7	8	9	H-MOR 6 員環後背部渡環 5 員環の酸素
84	0	7. 030220	164. 546070	-3. 252100	4	5	6	IT MULL 0 貝塚俊月即俊塚 3 貝塚の飲み
85	0	7. 030220		3. 252100	7	8	9	
	H		164. 548870			11	12	OC 07: この却八のも様と可亦
86			* 4.056906	* 91.187898	* 10			86-87; この部分のみ構造可変
87	H		* 3. 225231	* -59.038132	* 13	14	15	負電荷補償の水素~B 酸点に相当
88	XX	10.000000	90. 000000	0.000000	1	2	3	88-90;
89	XX	10.000000	90. 000000	0.000000	1	2	3	負電荷補償プロトン追加予備のダミ
90	XX	10.000000	90. 000000	0.000000	1	2	3	04 404 :
91	H	1. 379960	120. 112730	180. 000000	43	31	1	91-124;
92	H	1. 418980	105. 264010	117. 230750	44	32	33	H-MOR 上 12 員環右→左,
93	Н	1. 406200	111. 278020	116. 160260	44	32	92	下 12 員環右→左のキャッピング水素
	以下,	キャッピング水素	を中略					
124	Н	1. 386600	115. 127630	111. 225200	81	84	85	
125	XX	10.000000	90.000000	0.000000	1	2	3	125-160 ;
126	XX	10. 000000	90.000000	0.000000	1	2	3	反応種入力用ダミー
	以下,	反応種入力のため	のダミー原子を	中略				
	XX	10.000000	90, 000000					

3.3.2 水素原子によるキャッピングの影響について

計算化学におけるゼオライトの部分構造切り出しの際、ケイ素およびアルミニウム原子における骨格形成の残余価標に対する扱いとして、構造の自由度が増える水酸基に替えて水素原子を用いる場合が多い。そこで、テトラヒドロキシシランの水酸基を順次水素原子で置換した化合物の最適化を行い、おのおのの標準自由エネルギー(ΔH°)、最高占有軌道(HOMO) エネルギー準位、最低非占有軌道(LUMO) エネルギー準位の各数値に関する変遷を


比較検討した。それらの結果を表8にまとめた。切り出した骨格に対する計算を行う際のケイ素およびアルミニウムの残余価標は1ないし2となることから,一ないし二水素置換体とテトラヒドロキシシランとの ΔH^0 , HOMO, LUMO の数値の格差には留意を要する。たとえば,n=0と2との間の各数値の格差は,それぞれ723.8 kJ/mol, 0.95 eV, 0.61 eV となった。

3.3.3 ゼオライト包接モデルの構築と評価

PM5法を用いた反応種-ゼオライト包接系構築の ための作成手順を、対称性の扱いが容易なH-モル ナイトと4ペンテン酸との系を例として、以下に示す。H-モルデナイトの8員環部と12員環部を同時に含み、 C_{2v} 対称を有する部分構造 (Si=22, O=28)の展開図を図3に示した。この展開図を参考にPM5 法適用のための入力データを作成した。作成上の留意点は、以下のとおりである。

ゼオライト主骨格の入力は、構成原子間の結合情報を全く採用せず、カルテシアン座標の原点を含む xy平面を基準としてz軸方向に一定の間隔をおいた上下各4面からなる9枚の各面上に対称性を配慮して配置した。この際、各基準面の (x, y=0,0) 点と各酸素原子との距離設定として、細孔の短軸および長軸に関する文献値を参考とした以外は、任意の値を用いた。この入力法は、カルテシアン座標適用下にあっても、入力順序の後位にある原子の最適化が前位原子の構造パラメータ変動の影響を受けないため、最適化に要する計算時間が短縮できる。また、キャッピング水素の入力は、sp³ 混成ケイ素原子との結合を想定した結合長、結合角、ならびに二面角を採用した。以下に段階的構造最適化の手順を示す。

- 1) 全原子のパラメータを固定し、対称的な上下 各4面の間隔のみを最適化した。
- 2) 上記操作後の基準面9枚を固定した後,対称性を踏まえつつキャッピング水素に対して結合長,結合角,ならびに二面角を最適化した。
- 3) 上記操作後のキャッピング水素を固定した 後,主要原子の二面角に相当するパラメータ を対称性に配慮しながら最適化した。この操 作は,1)の最適化に際して各基準面上にあっ た主要原子を,基準面の上下方向に,より精 密に最適化することに相当する。
- 4) 上記操作の結果を固定した後、各基準面の (x, y=0, 0) 点と主要原子間の距離および角度を、対称性に配慮しながら最適化した。なお、細孔の短軸および長軸に相当する数値を入力値のままとすることもできる。
- 5) 上記操作の結果を固定した後、本反応の実験により得られた(2.4.4 および表3参照)適切な Si/Al比(=11.1)ならびに TO_4 四面体におけるアルミニウム原子置換数(=1)を参考に決定したアルミニウム 2 原子を、

H-MOR b 軸

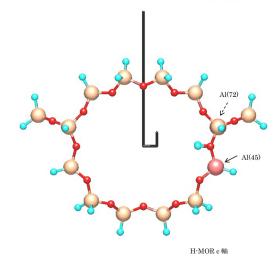


図4 表9のカルテシアン座標に基づく PM5法による H-MORの最適化構造図

Lowenstein 則 (Al-O-Al回避)⁷⁾, 五員環2 (Al) 回避則⁷⁾, Dempsey則 (六員環に対するメタ置換優先)⁷⁾に従って導入した (図3の Si(45) およびSi(72) を置換)。併せて, この置換に伴って生じる2つの負電荷を補償すべく2つの水素イオンを補填 (表9, ダミー原子 XXから, 位置可変として置換された水素原子 (86) および (87) に相当) した。

この操作終了後に得たH-モルデナイトの カルテシアン座標ならびに構造図を、それぞ れ表9、図4に示した。

- 6) 操作1) と同様な基準面を用いて反応種(4ペンテン酸)の構造最適化を別個に行い、最適化構造の座標値、ΔH⁰、HOMO、LUMOの各数値を求めた。
- 7) 上記操作で得た反応種の最適化構造を,操作 5)で得た構造データの下部, No. 131 以降の

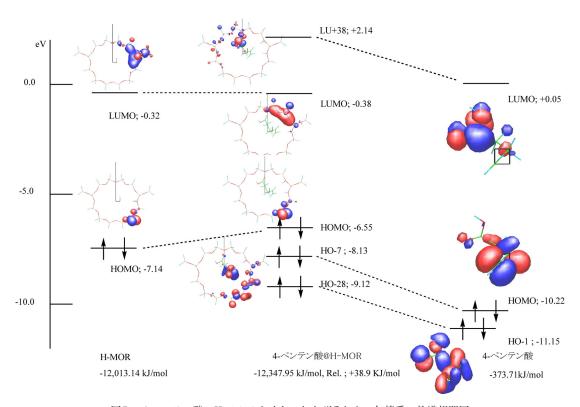


図5 4ペンテン酸, H-モルテナイト, およびそれらの包接系の軌道相関図

原子として追加入力した。この入力は、反応種を包接場中央付近に置くことになるが、No.131原子の可変要素すべて、No.132原子の結合長を除く可変要素二つ、およびNo.133の二面角可変要素の六つのみを可変とすると、配座を維持したままの反応種が、 ΔH^0 が最小となるように細孔内を移動した。この時、操作5)で追加した細孔内の二つの水素を可変とすることもできる。この操作により、反応種の配座を固定したままではあるが、包接系に対する ΔH^0 、HOMO、LUMOの各数値が求められた。

操作5), 6) および7) から得た結果を、図5の左から、包接場、反応種包接系、反応種の相関図として示した。これらの比較から次のような知見が得られる。H-モルデナイトのHOMOすなわち塩基点は、置換アルミニウム近傍の五員環部に分布する一方、LUMOは、アルミニウム置換に伴う負電荷を補償したB酸点付近に分布する。本系の分子内反応進行に欠かせないB酸点と塩基点との近接した位置関係

は極めて興味深い。単独の包接場と反応種包接系と のB酸点の比較から、包接に伴うB酸点の転位が示 唆された。包接場と反応種の ΔH⁰ 値の単純和 (-12386.85 kJ/mol) と包接系に対する数値 (-12347.95 kJ/mol) との比較から、この系の包接 が38.9 kJ/mol 吸熱的であることが示唆された。こ の結果は、アルケニルカルボン酸のH-モルデナイ トに対する包接が、サイズ的には可能であるものの 実際には起こりにくいという実験事実に一致する。 反応種における占有軌道各々を各官能基に帰属した 上でそれらの相対的準位を比較すると、オレフィン 部位の電子供与能がカルボキシル基部位の供与能に 優先することが示唆された。また、包接前後の各軌 道のエネルギー準位を比較すると、包接場のB酸点 に相当する LUMO に大きな変動がないのに対し、 包接後の反応種アルケン部位のエネルギー準位が 2.09 eV 上昇した。このことは、アルケン部位から 包接場のB酸点に対する電子供与能の増加が示唆さ れ、包接場による反応促進効果が期待される。

ここまで示してきた包接場に対する半経験的分子

軌道適用の検討は、緒に就いたばかりであるが、引き続き各種ゼオライトの基本骨格に対するデータベース化を進めると共に、3.2に示した各項目に対する高精度の検討を加え、本反応系を環境調和型有機合成法として確立していきたいと考える。併せて、この手法に対するご意見、ご批判を賜りたい。

4. おわりに

ゼオライト包接下,アルキル介在鎖末端にカルボキシル基,エステル基,ニトリル基,ならびにアミド基を有するアルケンを反応種とする有用天然化合物ラクトンの環境調和型合成例を示した。併せて,本反応系の解析・設計を目的とした半経験的分子軌道法適用の可能性を示した。

最後に、本研究の遂行にあたり多大なご支援を戴いた日本化学工業株式会社に対して謝意を表したい。

参考文献

- J.-J. Filippi, X. Fernandez, L. Lizzani-Cuvelier and A.-D. Loiseau, Flavour Fragr. J., 21, 175–184 (2006).
- M. F. Ansell and H. H. Palmer, Quarterly Rev., 18, 211–225 (1964).

- Y. Zhou, L. Keith, W. Robert and J. Angelici, Applied Catalysis A General., 333, 238-244 (2007).
- 4) I.フレミング著,福井健一監修,竹内敬人,友田修司 訳,フロンティア軌道法入門,講談社サイエンティ フィク (1978).
- 原 伸宜,高橋 浩,ゼオライト 基礎と応用,講談 社サイエンティフィク (1975).
- 6) 富永博夫,ゼオライトの科学と応用,講談社サイエンティフィク (1987).
- 小野嘉夫,八嶋建明,ゼオライトの科学と工学,講談 社サイエンティフィク (2000).
- 8) 特願 2011-251995, 特願 2011-251996.
- W. Lutz, Microporous Mesoporous Mater., 90, 339-346 (2006).
- 10) 岡本康昭, 表面科学, 8,596-602 (1991), 岡本康昭, ゼオライト, 10,195-199 (1993).
- 11) 北川 進, 水野元博, 前川雅彦, 多核種の溶液および 固体NMR, 三共出版, 183-195, 313-319 (2008).
- 山崎弘史, 野村淳子, ゼオライト, 28, 89-94 (2011), J. N. Kondo, D. Nishioka, H. Yamazaki, J. Kubota, K. Domen, and T. Tatsumi, J. Phys. Chem. C, 114, 20107-20113 (2010).
- Y.-F. Li, J.-Q. Zhu, H. Liu, P. He, P. Wang, and H.-P. Tian, Bull. Korean Chem. Soc., 32, 1851–1858 (2011).
- 14) 平野恒夫, 田辺和俊, 分子軌道法 MOPAC ガイドブック, 海文堂出版 (1991).
- 15) シラノールから環状シロキサンに至る総合的な解説として、海野雅史、有機合成化学協会誌、69,413-425 (2011).

Sustainable Organic Synthesis of Lactones by Some Alkenyl Carboxylic Acid Derivatives Encapsulated in Zeolite

Katsumasa Shibata,* Chiaki Hirata,* Yasunao Kuriyama** and Hiroki Itoh**

*Department of Material and Biological Chemistry, Graduate School of Science and Engineering, Yamagata University (Science) **Department of Material and Biological Chemistry, Faculty of Science, Yamagata University

In order to establish the way of sustainable organic synthesis of natural product such as lactone, the reactions of alkenyl carboxylic acid derivatives, such as acids, esters, nitriles, and amides, encapsulated in zeolite have been examined. Solid NMR measurement for some precalucinated HY zeolites revealed that the Si/Al ratio affected the efficiency of lactone formation. The reactions of four type reactants showed the interesting temperature effect on the regionselectivity between the 5-membered and 6-membered cyclization. Semiempirical molecular orbital calculation by using PM5 has been applied to evaluate the reactivity of encapsulated system.

Key words: zeolite, lactone, sustainable organic synthesis, Semiempirical molecular orbital calculation method

Copyright © 2012 Japan Zeolite Association All Rights Reserved.